Adaptive wavelet methods and sparsity reconstruction for inverse heat conduction problems
نویسندگان
چکیده
منابع مشابه
Inverse Heat Conduction Problems
In the heat conduction problems if the heat flux and/or temperature histories at the surface of a solid body are known as functions of time, then the temperature distribution can be found. This is termed as a direct problem. However in many heat transfer situations, the surface heat flux and temperature histories must be determined from transient temperature measurements at one or more interior...
متن کاملAssessment of Various Methods in Solving Inverse Heat Conduction Problems
In an inverse heat conduction problem (IHCP), the boundary conditions, initial conditions, or thermo-physical properties of material are not fully specified, and they are determined from measured internal temperature profiles. The challenge is that the effect of changes in boundary conditions are normally damped or lagged, i.e. the varying magnitude of the interior temperature profile lags behi...
متن کاملAdaptive Wavelet Galerkin Methods for Linear Inverse Problems
We introduce and analyze numerical methods for the treatment of inverse problems, based on an adaptive wavelet Galerkin discretization. These methods combine the theoretical advantages of the wavelet-vaguelette decomposition (WVD) in terms of optimally adapting to the unknown smoothness of the solution, together with the numerical simplicity of Galerkin methods. In a first step, we simply combi...
متن کاملSolving random inverse heat conduction problems using PSO and genetic algorithms
The main purpose of this paper is to solve an inverse random differential equation problem using evolutionary algorithms. Particle Swarm Algorithm and Genetic Algorithm are two algorithms that are used in this paper. In this paper, we solve the inverse problem by solving the inverse random differential equation using Crank-Nicholson's method. Then, using the particle swarm optimization algorith...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Computational Mathematics
سال: 2010
ISSN: 1019-7168,1572-9044
DOI: 10.1007/s10444-010-9147-2